CAT.No.1H1001-0E

High-Side/Low-Side Driver IC

Application Note Version 1.0

Usage Precautions

Thank you for purchasing this Shindengen product.

Note the following warnings and precautions to ensure safety when using this IC:

WARNING Indicates hazards that may lead to death, serious injury, or serious damage to property if handled improperly.		
CAUTION		Indicates hazards that may lead to minor injury or minor damage to property if the product is handled improperly.
WARNING		• This IC is intended for use in general electronic devices (e.g., office equipment, communications equipment, measuring equipment, domestic appliances). Do not use in mission critical control equipment for which malfunctions or failure may result in death; examples include medical equipment, aerospace equipment, rail vehicles, transportation equipment (e.g., vehicle-mounted, marine), and nuclear power control equipment. Please consult with Shindengen regarding use in equipment other than general electronic devices.
CAUTION		 Never attempt to repair or modify the product. Doing so may lead to serious incidents or injury, <i>including electric shock, damage, fire, and malfunctions.</i> Excessively high or reduced voltages may be produced at the output pins under abnormal conditions. Protective measures (e.g., overvoltage and overcurrent safeguards) should be incorporated into the final device to protect against possible load malfunctions and damage under abnormal conditions. Check the polarity of the input and output pins to ensure that they are properly connected before supplying power. <i>Failure to do so may trip protective devices or lead to smoke generation or fire.</i> Use only the specified input voltage. Be sure to incorporate protective devices on the input line. Failure to do so may result in smoke generation or fire under abnormal conditions. In the event of a failure or abnormality during use, shut off the input immediately and turn off the power supply, then promptly contact Shindengen.

- The information provided in this document is subject to change without notice to reflect product improvements.
- Confirm the issued specifications for the product before use.
- Every care has been taken to ensure the accuracy and reliability of the detailed information provided in this document. Nevertheless, Shindengen rejects all liability for any damages or infringement of patents or other rights resulting from the use of this document.
- This document does not confer rights to use patents or other rights of third parties or Shindengen.
- Unauthorized reproduction of this document in part or its entirety is strictly prohibited.

A Shindengen strives constantly to improve product quality and reliability. Nevertheless, all semiconductor products are subject to occasional failures or malfunctions. The user is responsible for safeguarding against accidents causing injury or death, fire, and social harm through the use of redundancy, fire prevention, and malfunction prevention design.

The Shindengen semiconductor products described in this document are not designed or manufactured for use in equipment or systems subject to the stringent quality and reliability requirements of mission critical systems in which failures or malfunctions may pose direct consequences for human life or health. Be sure to contact Shindengen and obtain confirmation before using the products in equipment or systems corresponding to the following specific applications:

Special uses	Transportation equipment (e.g. vehicle-mounted, marine), core communications equipment, traffic signal equipment, disaster prevention/security equipment, various safety equipment, medical equipment, etc.	
Specified uses	Nuclear power control systems, aviation equipment, aerospace equipment, undersea repeater equipment, life support equipment, etc.	

Even for IC products that do not correspond to the specific uses described herein, contact Shindengen if you intend to use our products in equipment or systems designed to operate continuously or equipment or systems that require long product service life.

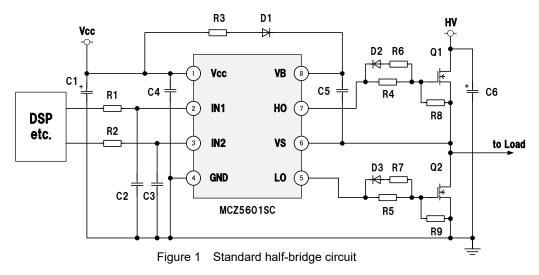
Contents

1. Ove	erview ······3
1.1	Features ······3
1.2	Standard circuit diagram ······3
1.3	Block diagram ·····4
1.4	Pin assignment diagram ······4
1.5	Pin function list ······4
2. Spe	ecifications5
2.1	Absolute maximum ratings5
2.2	Recommended operating conditions5
2.3	Electrical characteristics ······6
2.4	Typical characteristic curves (Reference curves)······7-10
2.5	Truth table 11
3. Exp	lanation of Functions ······ 12
3.1	UVLO (Under Voltage Lock Out) function 12
3.2	Simultaneous ON prevetion function 13
4. Des	sign Precautions ······ 14
4.1	High-side drive using a bootstrap circuit ····· 14
4	1.1 Bootstrap circuit basic operation
4	1.2 Bootstrap capacitor C5 ······14-15
4	1.3 Bootstrap diode D1 ····· 15
	1.4 Inrush current protection resistor R3 ····· 15
4	1.5 Precautions when driving an IGBT ····· 15
4.2	Vcc capasitor 16
4.3	Input signal dead time ······ 16
4.4	Gate resistance 16
4.5	Self turn-on 17
4.6	VS pin negative voltage 18
5. Pat	tern Design Precautions ······ 19

1. Overview

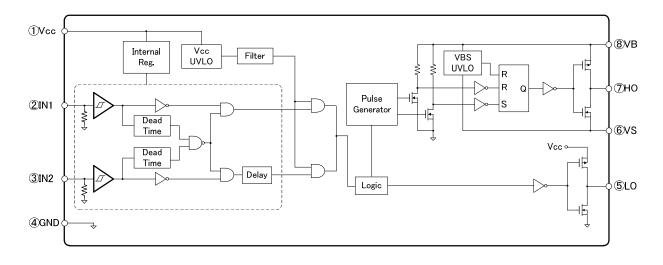
The MCZ5601SC are two-input/two-output high-side/low-side driver ICs for driving power devices such as power MOSFETs and IGBTs. They incorporate a 600 V withstand voltage level shift circuit and a 22 V withstand voltage driver. They are suitable for use in a wide range of applications, including inverter circuits and AC/DC or DC/DC power supplies.

They incorporate a simultaneous ON prevention protection function to prevent through current occurring by canceling the output if ON signals are input to two input pins simultaneously.

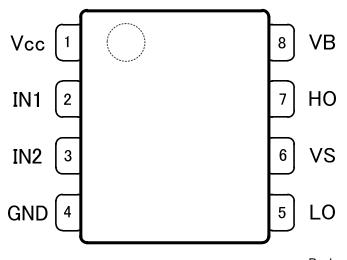

1.1 Features

The main MCZ5601SC features are as follows:

- High-side withstand voltage: 600V
- 2-input/2-output high-side/low-side driver
- Source current I_source = 400 mA, sink current I_sink = 400 mA
- ton = 210ns, toff = 195ns, tr = 33ns, tf = 30ns
- Supports both input 5 V and input 3.3 V logic
- Incorporates UVLO/simultaneous ON prevention protection function
- High-side dVS/dt tolerance: 50 V/ns


1.2 Standard circuit diagram

An example of a standard half-bridge circuit diagram is shown below.



1.3 Blick diagram

1.4 Pin assignment diagram

Package : SOP8J

Pin No.		Symbol	Name		
	1	Vcc	Power supply pin		
	2	IN1	Input pin 1		
	3	IN2	Input pin 2		
	4	GND	Ground pin		
	5	LO	Driver 2 output pin		
	6	VS	Driver 1 reference pin		
	7	НО	Driver 1 output pin		
	8	VB	Driver 1 power supply pin		

1.5 Pin function list

2. Specifications

Unless otherwise specified, Tj = 25 °C, Vcc = VB = 16 V, VS = GND. IN1 = IN2 is abbreviated as IN.

The current polarity is shown as negative for current drawn in and positive for current output.

The voltages indicated are DC voltages (not AC voltages). Items in the table indicated "-" are non-guaranteed values.

2.1 Absolute maximum ratings

Exceeding the absolute maximum ratings may result in malfunction or device destruction.

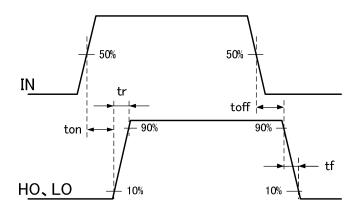
Item	Symbol	Rating	Units
Thermal ratings			
Storage temperature	Tstg	-55–150	°C
Junction temperature	Tj	-40–150	°C
Power dissipation (*1)	Pd	1.5	W
Thermal resistance (*1)	θja	83.3	°C/W
Input/output ratings			
Vcc pin maximum applied voltage	Vcc	-0.3–22	V
IN pin maximum applied voltage	VIN	-0.3–6.0	V
VB pin maximum applied voltage	VB	-0.3–600	V
VS pin maximum applied voltage	VS	VB-22VB+0.3	V
VB-VS pin maximum applied voltage	VBS	-0.3–22	V
HO pin maximum applied voltage	VHO	VS-0.3–VB+0.3	V
dVS/dt maximum permissible offset voltage	dVS/dt	50	V/ns

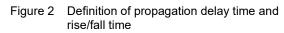
*1: Glass epoxy PCB: 114.3 mm × 76.2 mm, thickness 1.6 mm, internal copper foil size: 74.2 mm × 74.2 mm, thickness 35 um

2.2 Recommended operating conditions

Item	Symbol	Recommended value			Units	
Item	Symbol	Min	Тур	Max	Units	
Operating temperature	Tj(ope)	-20	-	120	°C	
Vcc pin applied voltage	Vcc	10	-	20	V	
IN pin applied voltage	VIN	0	—	5.5	V	
VB pin applied voltage	VB	VS+10	_	VS+20	V	
VS pin applied voltage	VS	0	_	500	V	
VB-VS pin applied voltage	VBS	10	_	20	V	
HO pin applied voltage	VHO	VS	_	VB	V	

Note: Product service life will vary even within the operating environmental ranges described above.


Operating temperatures are recommended not to exceed Tj = 105 °C when the product is to be used for extended periods.



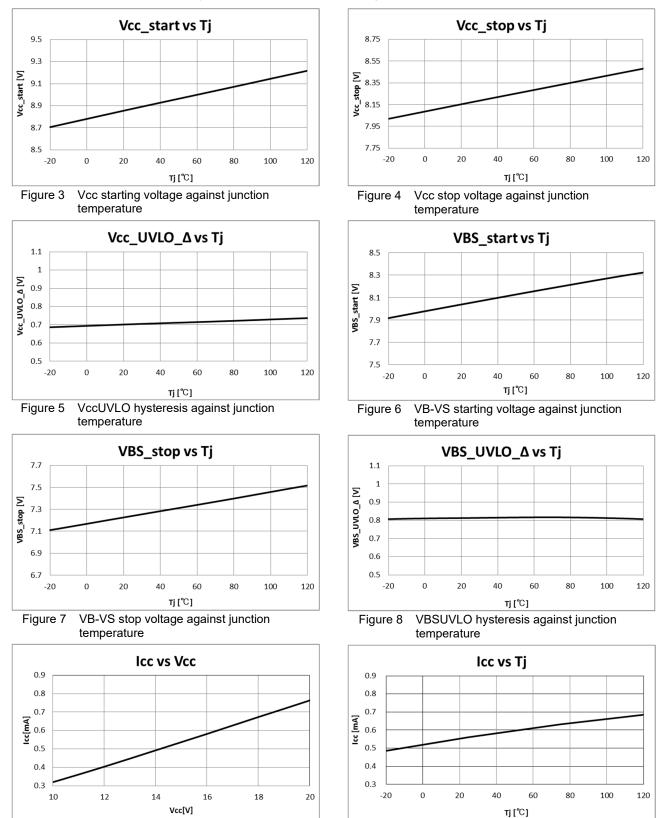
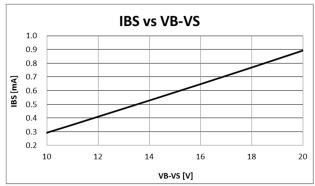
2.3 Electrical characteristics

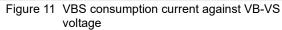
ltem	Symbol	Condition	Recommended value			Units	
	5		Min	Тур	Max	00	
Vcc pin							
Vcc starting voltage	Vcc_start		8.50	9.00	9.50	V	
Vcc stop voltage	Vcc_stop		7.75	8.20	8.60	V	
VccUVLO hysteresis	Vcc_UVLO_Δ	$\Delta = Vcc_start - Vcc_stop$	0.50	0.80	1.10	V	
Vcc consumption current	lcc	IN = 0V	0.3	0.6	0.9	mA	
Low-side minimum operating voltage (*2)	Vcc_min				5.0	V	
VB pin							
VB-VS starting voltage	VBS_start		7.50	8.00	8.50	V	
VB-VS stop voltage	VBS_stop		6.70	7.20	7.70	V	
VBSUVLO hysteresis	VBS_UVLO_A	$\Delta = VBS_start - VBS_stop$	0.50	0.80	1.10	V	
VBS consumption current	IBS	IN = 0V	0.3	0.6	0.9	mA	
High-side minimum operating voltage (*2)	VBS_min				5.0	V	
IN1, IN2 pins							
IN pin upper threshold voltage	VIH		1.6	2.0	2.4	V	
IN pin lower threshold voltage	VIL		0.9	1.2	1.6	V	
IN pin threshold hysteresis voltage	VINhys	VINhys = VIH - VIL	0.4	0.8	1.2	V	
HO, LO pins	HO, LO pins						
Output source current	IHO_H ILO_H	IN1 = 5V, HO - VS = 0V IN2 = 5V, LO - GND = 0V	0.30	0.40	0.65	А	
Output sink current	IHO_L ILO_L	IN1 = 0V, HO - VS = 16V IN2 = 0V, LO - GND = 16V	-0.65	-0.40	-0.30	А	
Minimum fixed dead time	DT		70	160	250	ns	
Turn-on propagation delay time	ton	CL=1000pF	100	210	400	ns	
Turn-off propagation delay time	toff	CL=1000pF	100	195	400	ns	
Delay time difference	DM	$(IN1\uparrow \sim HO\uparrow) - (IN2\uparrow \sim LO\uparrow)$ $(IN1\downarrow \sim HO\downarrow) - (IN2\downarrow \sim LO\downarrow)$	-50	0	50	ns	
Output rise time (*2)	tr	Vcc = 16V, CL=1000pF		33		ns	
Output fall time (*2)	tf	Vcc = 16V, CL=1000pF		30		ns	

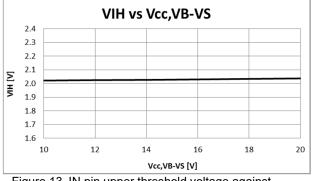
*2: Design guarantee

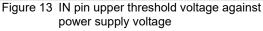
2.4 Typical characteristic curves (Reference curves)

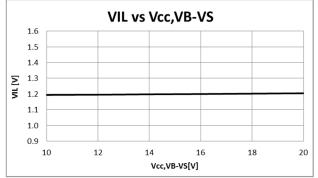
The data provided here indicate typical characteristics and do not guarantee specific characteristics.

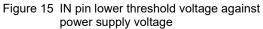




Figure 9 Vcc consumption current against Vcc pin applied voltage


Figure 10 Vcc consumption current against junction temperature




2.4 Typical characteristic curves (Reference curves) (continued)



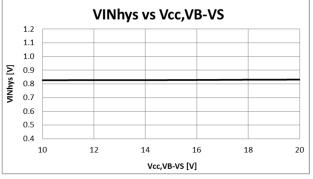


Figure 17 IN pin threshold hysteresis voltage against power supply voltage

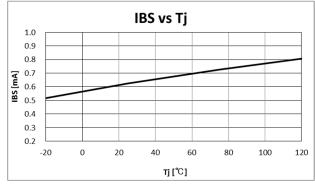


Figure 12 VBS consumption current against junction temperature

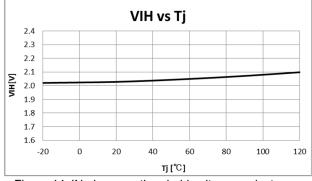
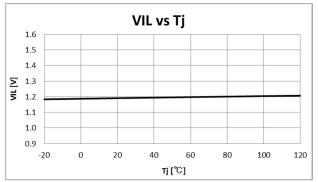
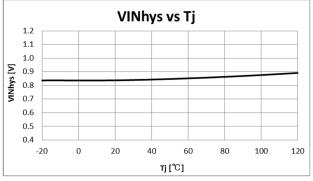
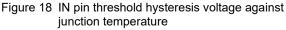
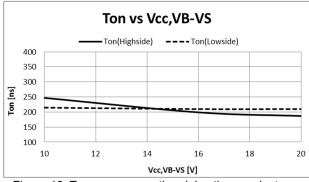
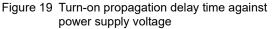
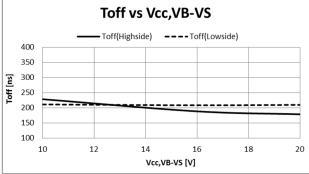


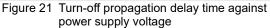
Figure 14 IN pin upper threshold voltage against junction temperature

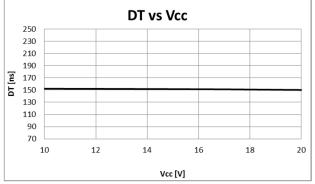




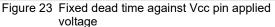

Figure 16 IN pin lower threshold voltage against junction temperature

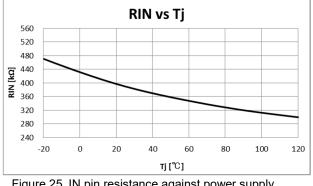


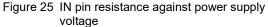





2.4 Typical characteristic curves (Reference curves) (continued)







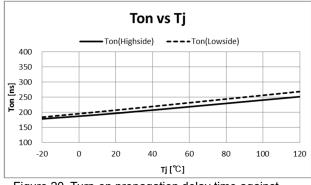


Figure 20 Turn-on propagation delay time against junction temperature

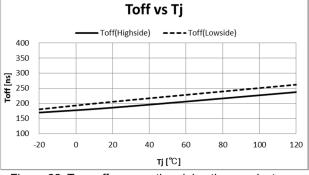


Figure 22 Turn-off propagation delay time against junction temperature

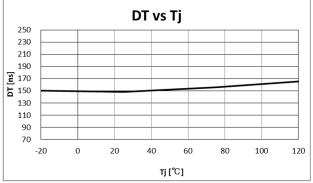
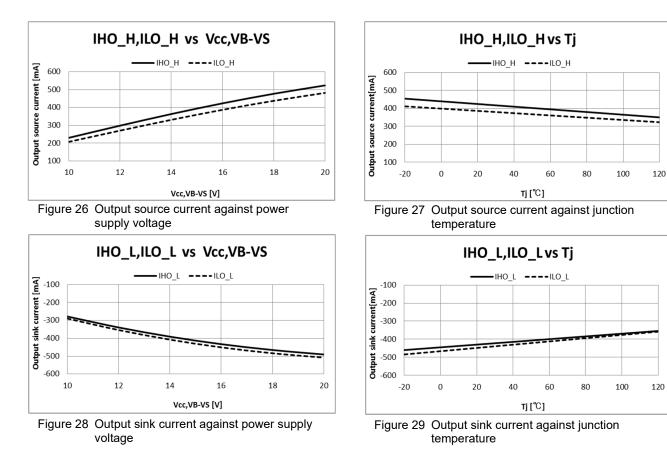



Figure 24 Fixed dead time against junction temperature

2.4 Typical characteristic curves (Reference curves) (continued)

2.5 Truth table

IN1	IN2	Vcc	VBS	НО	LO
_	_	L	L	L	L
_	-	L	Н	L	L
_	L	Н	L	L	L
L	L	Н	Н	L	L
L	Н	Н	L	L	Н
L	Н	Н	Н	L	Н
Н	L	Н	Н	Н	L
н	Н	Н	L	L	L
Н	Н	Н	Н	L	L

Vcc (VBS) = H: Vcc (VBS) is Vcc_start (VBS_start) or greater or

Vcc_stop (VBS_stop) or greater after UVLO is released

Vcc (VBS) = L: Vcc (VBS) is Vcc_stop (VBS_stop) or lower or Vcc_start (VBS_start) or lower before UVLO is released

Where

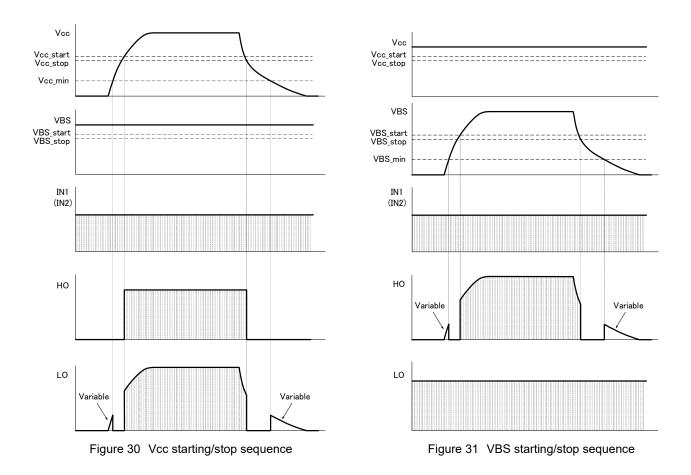
VBS: VB-VS pin voltage

After UVLO is released: A voltage of Vcc_start (VBS_start) or greater is applied

Before UVLO is released: A voltage of Vcc_stop (VBS_stop) or lower is applied at startup or after UVLO is released

3. Explanation of Functions

3.1 UVLO (Under Voltage Lock Out) function


The MCZ5601SC incorporate a UVLO function in the power supply circuits between the Vcc and GND pins and between the VB and VS pins. (Vcc_UVLO, VBS_UVLO)

If the Vcc pin voltage is lower than the Vcc starting voltage Vcc_start at startup or lower than the Vcc stop voltage Vcc_stop after startup, the Vcc_UVLO function holds both the HO and LO output at Low, regardless of the IN1 and IN2 input signals.

The Vcc_UVLO function has a minimum operating voltage Vcc_min. The LO output is variable if the Vcc voltage is Vcc_min or lower.

If VB-VS power supply voltage VBS is lower than the VB-VS starting voltage VBS_start at startup or lower than the VB-VS stop voltage VBS_stop after startup, the VBS_UVLO function holds the HO output at Low regardless of the IN1 input signal. Note that the LO output is not held at Low by the VBS_UVLO function.

The VBS_UVLO function also has a minimum operation voltage VBS_min. If a signal is input to IN1 while the Vcc voltage is established and the VBS voltage does not exceed VBS_min, the HO output will vary.

3.2 Simultaneous ON prevention function

The MCZ5601SC include a simultaneous ON prevention protection function. This forces both HO and LO outputs to Low if High is simultaneously input to both the IN1 and IN2 signals

If one of the input signals changes to Low after the simultaneous ON prevention protection function activates, the simultaneous ON prevention protection function is canceled, and the other output signal is output at High after the elapse of fixed dead time DT.

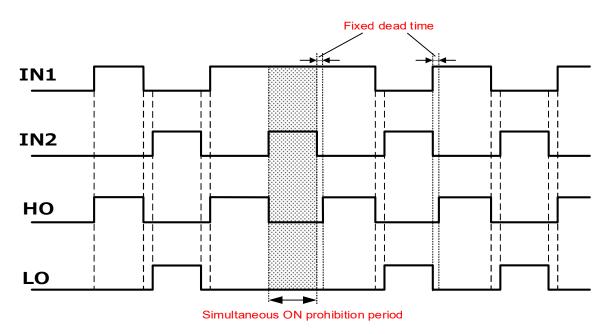


Figure 32 Simultaneous ON prevention timing chart

4. Design Precautions

The selection criteria described in this document are provided purely for guidance. Determine the appropriate parameters based on thorough evaluations on the actual apparatus.

4.1 High-side drive using a bootstrap circuit

Driving a high-side MOSFET requires a high-side power supply voltage VBS using the high-side MOSFET source potential as a reference. VBS is readily configured by mounting an external bootstrap circuit.

4.1.1 Bootstrap circuit basic operation

- ① When the low-side MOSFET Q2 activates, the VS voltage drops to ground potential. (The green line is at equal potential.)
- 2 Bootstrap capacitor C5 is charged by low-side power supply voltage Vcc via bootstrap diode D1.
- ③ When Q2 turns off, the VS becomes a floating voltage, and the charging loop is shut off.
- ④ In this state, if an IN1 signal is input, the high-side MOSFET Q1 is driven by the charge stored in C5

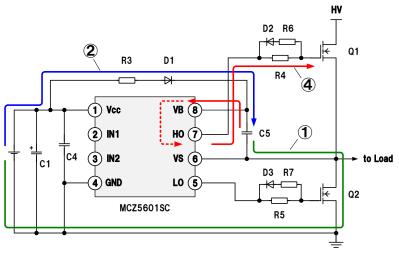


Figure33 Bootstrap circuit basic operation

4.1.2 Bootstrap capacitor C5

C5 is not charged during the state described in 4.1.1 ④, so the high-side power supply voltage VBS gradually drops due to the Q1 gate charge current, MCZ5601SC VBS consumption current IBS, and C5 leakage current. Select the C5 capacitance to keep VBS from dropping below the VB-VS stop voltage VBS_off while Q1 is on.

The minimum required capacitance can be obtained using equation ①, although allowing a two- to three-fold margin is recommended.

A capacitor other than an electrolytic capacitor is recommended, as this allows leakage current lcbs_leak for C5 to be ignored

$$C5 = \frac{Qg + IBS \times Ton1(max) + Icbs_leak \times Ton1(max)}{Vcc - VBS_off - Vf - VLS} \dots \text{ Equation } (1)$$

Where Qg: MOSFET or IGBT gate charging load [C]

IBS: MCZ5601SC VBS consumption current = 0.6 mA(typ.) Ton1 (max): Q1 maximum on time [s] Icbs_leak: Capacitor C5 leakage current [A] Vcc: Low-side power supply voltage [V] VBS_off: VB-VS stop voltage [V] Vf: Bootstrap diode D1 forward voltage [V] VLS: VDS voltage when Q2 is on [V]

4.1.3 Bootstrap diode D1

To reduce the charge returned to the Vcc power supply while Q1 is on, select an FRD or SBD with a short reverse recovery time trr for bootstrap diode D1.

Select D1 with a withstand voltage not less than the withstand voltage for Q2. The average current ID1_ave [A] for D1 can be roughly determined by the product of the total Q1 gate charge Qg1 [C] and switching frequency f [Hz] (Equation 2).

Select a diode D1 with a current rating that satisfies ID1_ave.

 $ID1_ave = Qg1 \times f$... Equation (2)

4.1.4 Inrush current protection resistor R3

The inrush current protection resistor R3 must be included to protect D1 from damage due to inrush currents during initial charging of C5. To avoid exceeding the peak permissible current ID1(peak) for D1 selected in 4.1.3, select a resistance for R3 that satisfies Equation ③.

R3 >	Vcc _ max	Equation ③
K3 /	ID1(peak)	Equation 3

Note that if R3 is too large, the charging current to C5 may be insufficient, resulting in reduced VBS. To prevent reduced VBS, the charge discharged during the Q1 on time Ton1 must be replenished during the Q2 on time Ton2. When adjusting R3, use the actual apparatus to confirm that VBS does not drop below VBS_off even for the minimum Ton2 time.

4.1.5 Precautions when driving an IGBT

If an IGBT is used for the switching device, the collector-emitter saturation voltage Vce(sat) will be highly dependent on the gate voltage. If the gate voltage is low, the saturation voltage will increase, increasing conduction losses. The recommended IGBT gate voltage is typically a minimum of 15 V. Confirm the recommended gate voltage of the IGBT used and ensure that the recommended Vcc pin voltage operating conditions are satisfied when designing the Vcc voltage and bootstrap circuit components.

<u>MCZ5601SC</u>

4.2 Vcc capacitor

The Vcc voltage forms the low-side power supply voltage and bootstrap capacitor feed power supply. Malfunctions may occur if the Vcc voltage ripple voltage is excessive.

To stabilize the Vcc voltage, select a capacitor for the Vcc capacitor C1 with a capacitance of at least ten times that of the bootstrap capacitor C5.

4.3 Input signal dead time

For half-bridge circuits and inverter circuits, a dead time longer than the turn-off time toff must be set using the input signal in the on/off switching timing to prevent Q1/Q2 short-circuits. If the dead time is too short, Q1/Q2 short-circuits may occur, resulting in overheating and device failure.

Increasing the gate resistance will also increase the turn-off time, necessitating a longer dead time. Factors such as other drive parameters and temperature characteristics must also be taken into consideration. Set the input signal dead time based on adequate inspections using the actual apparatus.

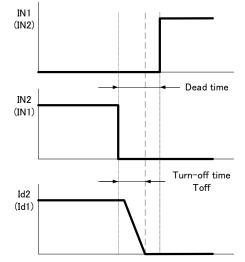


Figure 34 Relationship between dead time and turn-off time

4.4 Gate resistance

The gate resistance is affected by the MOSFET turn-on and turn-off switching characteristics. Typically, higher gate resistance for gate on Rg_source and higher gate resistance Rg_sink for gate off will increase the turn-on time and turn-off time, increasing switching losses. Similarly, a lower Rg_sink value will increase the surge voltage during switching.

Exercise care when adjusting the gate resistance to avoid both Q1/Q2 short-circuits and self turn-ons. For more information, refer to "4.3 Input signal dead time" and "4.5 Self turn-on," respectively.

Rg_sink must be reduced to prevent Q1/Q2 short-circuits. Increase Rg_source and reduce Rg_sink when using the gate resistance to prevent self turn-on.

Additionally, adjust Rg1 and Rg2 on the actual apparatus, accounting for factors such as noise and MOSFET heat generation.

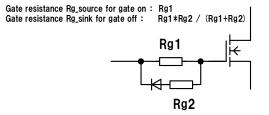


Figure 35 Gate circuit configuration example

<u>MCZ5601SC</u>

4.5 Self turn-on

The MOSFET gate may be turned on incorrectly (self turn-on) by the dV/dt that arises when the body diode reverse recovers. The process whereby Q2 experiences self turn-on is described below.

If Q1 turns on from a state in which both Q1 and Q2 are off, the Q2 body diode BD2 reverse recovers.

At the same time, dV/dt corresponding to the Q1 switching time is generated at the VS pin.

As the MOSFET includes feedback capacitance Crss, a current corresponding to Irss = Crss × dV/dt flows via the Crss of Q2.

This current Irss raises the gate potential due to the gate resistance Rg_sink, resulting in voltage Vgs between the gate and source exceeding the Q2 gate threshold voltage Vth, causing Q2 to turn on incorrectly.

This short circuits Q1 and Q2.

Measures to prevent this self turn-on include the following:

- ① Add a capacitor Cgs between the gate and source.
- 2 Reduce the gate resistance Rg_sink.
- ③ Increase the gate resistance Rg_source.
- ④ Add a CR snubber between the drain and source.

These measures affect switching speed and switching losses. Always check these measures on the actual apparatus.

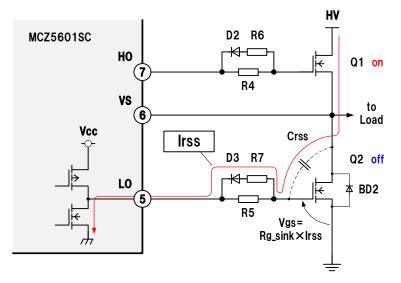


Figure 36 Self turn-on operation (Irss current path)

<u>MCZ5601SC</u>

4.6 VS pin negative voltage

If Q1 turns off when the low-side MOSFET Q2 is off and the high-side MOSFET Q1 is on, the current flowing through Q1 refluxes between the Q2 body diode and load. In such cases, the VS pin voltage will drop with respect to GND potential due to the track inductance and current change rate di/dt. Exceeding the VS pin maximum applied voltage may result in IC malfunctions or failure.

The following are effective ways to reduce the VS negative voltage:

- ① Minimize track inductance by increasing the width and reducing the length of the tracks through which the reflux current flows.
- In particular, increase the width and reduce the length of the Q1 source and Q2 drain tracks.
- 2 Increase the gate resistance Rg_sink and reduce di/dt.

Figure 37 shows an example of measurements of negative voltage tolerance with respect to negative voltage pulse width. Negative voltage tolerance here indicates the input signal value for which the IC does not malfunction or fail. Note that Figure 37 shows typical characteristics. It makes no guarantees regarding specific values.

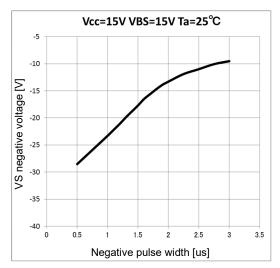


Figure 37 VS pin negative voltage tolerance (typical data)

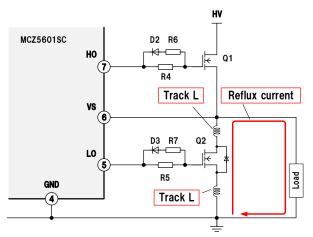


Figure 38 Track inductance and reflux current schematic

5. Pattern Design Precautions

This section describes the precautions required for pattern design. The actual layout must comply with the safety standards stipulated for the countries and regions in which the product is to be sold and must be thoroughly evaluated on the actual apparatus.

Typical pattern design should account for the following five points:

- 1. Design power lines carrying large current as tracks as wide and as short as possible. Separate the ground line into a power ground and IC ground. Connect the IC ground to a stable potential with minimal current fluctuations.
- 2. Locate the IC as close as possible to the MOSFET. Keep the drive tracks between the MOSFET gates and HO and LO as short as possible.
- 3. To avoid interference, design the layout to keep the drive tracks and MOSFET main circuit tracks as far apart as possible.
- 4. Locate Vcc capacitors C1 and C4 and the bootstrap capacitor C5 as close as possible to the MCZ5601SC pins.
- 5. If the input signal is affected by external noise, we recommend locating a CR filter with a resistance between 0 Ω and several dozen Ω and capacitance of approximately 220 pF immediately next to the IN1 and IN2 pins.

SHINDENGEN